Lemma 2:
Let $H$ be the Hamiltonion of a fermionic harmonic oscillator. Then we have

$$
\operatorname{Tr} e^{-\beta H}=\int d \theta^{*} d \theta\langle-\theta| e^{-\beta H}|\theta\rangle e^{-\theta^{*} \theta}
$$

Proof:
Inserting the completeness relation into the definition of a partition function, we gel

$$
\begin{aligned}
& Z(\beta)= \\
= & \sum_{n=0,1}\langle n| e^{-s H}|n\rangle \\
= & \sum_{n} \int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle n \mid \theta\rangle\langle\theta| \theta^{-\beta H} \mid \theta\left(1-\theta^{*} \theta\right)(\langle n \mid 0\rangle+\langle n \mid 1\rangle \theta) \\
& \quad\left(\langle 0| e^{-\beta H}|n\rangle+\theta^{*}\langle 1| e^{-\Delta H}|n\rangle\right) \\
= & \sum_{n} \int d \theta^{*} d \theta\left(1-\theta^{*} \theta\right)\left[\langle 0| e^{-\beta H}|n\rangle\langle n \mid 0\rangle\right. \\
& \quad-\theta^{*} \theta\langle 1| e^{-\beta H}|n\rangle\langle n \mid 1\rangle+\theta\langle 0| e^{-\beta H}|n\rangle\langle n \mid 1\rangle \\
& \left.+\theta^{*}\langle 1| e^{-\beta H}|n\rangle\langle n \mid 0\rangle\right] \\
= & \sum_{n} \int d \theta^{*} d \theta\left(1-\theta^{*} \theta\right)\left[\langle 0| e^{-\beta H}|0\rangle-\theta^{*} \theta\langle |\left|e^{-\beta H}\right| 1\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&\left.\left.+\theta\langle 0| e^{-\beta H}|1\rangle-\theta^{*}\langle |\left|e^{-\Delta H}\right| 0\right\rangle\right] \\
&=\int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle-\theta| e^{-\beta H}|\theta\rangle
\end{aligned}
$$

$\rightarrow$ coordinate in the trace is over "anti-periodic" orbits, ie. the Grassmann variable is $\theta$ at $t=0$ and $-\theta$ at $t=\beta$
$\rightarrow$ have to impose an anti-periodic boundary condition over $[0, \beta]$ in trace.
Path integral expression:
Using the identity

$$
e^{-\beta H}=\lim _{N \rightarrow \infty}(1-\beta H / N)^{N}
$$

$$
\begin{aligned}
& \text { we find } \\
& \quad Z(\beta)=\lim _{N \rightarrow \infty} \int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle-\theta|(1-\beta H / N)^{N N}|\theta\rangle \\
& =\lim _{N \rightarrow \infty} \int d \theta^{*} d \theta \prod_{k=1}^{N-1} \int d \theta_{k}^{*} d \theta_{k} e^{-\sum_{n=1}^{N-1} \theta_{n}^{*} \theta_{n}} \\
& \quad \times\langle-\theta|(1-\varepsilon H)\left|\theta_{N-1}\right\rangle\left\langle\theta_{N-1}\right| \ldots\left|\theta_{1}\right\rangle\left\langle\theta_{1}\right|(1-\Sigma H-1)|\theta\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \int \prod_{k=1}^{N} d \theta_{k}^{*} d \theta_{k} e^{-\sum_{n=1}^{N} \theta_{n}^{*} \theta_{n}} \\
& \quad \times\left\langle\theta_{N}\right|(1-\Sigma H)\left|\theta_{N-1}\right\rangle\left\langle\theta_{N-1}\right| \cdots\left|\theta_{1}\right\rangle\left\langle\theta_{1}\right|(1-\Sigma H)\left|-\theta_{N}\right\rangle
\end{aligned}
$$

where we put $L=\beta / N$ and $\theta=-\theta_{N_{1}}=\theta_{0}$,

$$
\theta^{*}=-\theta_{N}^{*}-\theta_{0}^{*}
$$

$\rightarrow$ each matrix element is evaluated as

$$
\begin{aligned}
& \left\langle\theta_{k}\right|(1-\varepsilon H 1)\left|\theta_{k-1}\right\rangle \\
= & \left\langle\theta_{k} \mid \theta_{k-1}\right\rangle\left[1-c \frac{\left\langle\theta_{k}\right| H\left|\theta_{k-1}\right\rangle}{\left\langle\theta_{k} \mid \theta_{k-1}\right\rangle}\right] \\
\widetilde{ } & \left\langle\theta_{k} \mid \theta_{k-1}\right\rangle e^{-\varepsilon\left\langle\theta_{k}\right| H\left|\theta_{k-1}\right\rangle /\left\langle\theta_{k} \mid \theta_{k-1}\right\rangle}
\end{aligned}
$$

$\left\langle\theta_{K} \mid \theta_{K-1}\right\rangle=e^{\theta_{k}^{*} \theta_{K-1}}$ last lecture

$$
\begin{aligned}
& \left\langle\theta_{k} \mid \theta_{k-1}\right\rangle=e \\
& \left\langle\theta_{k}\right| H\left|\theta_{k-1}\right\rangle=\left(H_{\infty 0}+\theta_{k}^{*} H_{10}+H_{01} \theta_{k-1}+\theta_{k}^{*} \theta_{k-1} H_{11}\right) e^{\theta_{k}^{*} \theta_{k-1}} \\
= & e^{\theta_{k}^{*} \theta_{k-1}} e^{-\varepsilon \omega\left(\theta_{k}^{*} \theta_{k-1}-\frac{1}{2}\right)} \\
= & e^{\varepsilon \omega / 2} e^{(1-\varepsilon \omega) \theta_{k}^{*} \theta_{k-1}} \\
\rightarrow & Z(\beta) \\
= & \lim _{N \rightarrow \infty} e^{\beta \omega / 2} \prod_{k=1}^{N} \int d \theta_{k}^{*} d \theta_{k} e^{-\sum_{n=1}^{N} \theta_{n}^{*} \theta_{n}(1-\Sigma \omega)+\sum_{n=1}^{N} \theta_{n}^{*} \theta_{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\beta \omega / 2} \lim _{N \rightarrow \infty} \frac{N}{\prod_{k=1}^{N}} \int d \theta_{k}^{*} d \theta_{k} e^{-\theta^{+} B \theta}
\end{aligned}
$$

where

$$
\begin{aligned}
& \theta=\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{N}
\end{array}\right), \theta^{+}=\left(\theta_{1}^{*}, \theta_{2}^{*}, \ldots, \theta_{N}^{*}\right) \\
& B_{N}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -y \\
y & 1 & 0 & \cdots & 0 \\
0 & y & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots & y & 1
\end{array}\right)
\end{aligned}
$$

with $y=-1+\varepsilon \omega$

$$
\begin{aligned}
\rightarrow Z(\beta) & =e^{\beta \omega / 2} \lim _{N \rightarrow \infty} \operatorname{det} B_{N} \\
& =e^{\beta \omega / 2} \lim _{N \rightarrow \infty}\left[1+(1-\beta \omega / N)^{N}\right] \\
& =e^{\beta \omega / 2}\left(1+e^{-\beta \omega}\right) \\
& =2 \cosh \frac{1}{2} \beta \omega
\end{aligned}
$$

Grassmann path integral
for Dirac fermions
In analogy with the generating functional for the scalar field

$$
\begin{aligned}
Z & =\int D \varphi e^{i S(\varphi)} \\
& =\int D \varphi e^{i \int d^{4} \frac{1}{2}\left[(\partial \varphi)^{2}-\left(m^{2}-i \Sigma\right) \varphi^{2}\right]}
\end{aligned}
$$

we write for the Dirac field

$$
\begin{aligned}
Z & =\int D \psi \mathcal{D} \bar{\psi} e^{i S(\psi, \bar{\psi})} \\
& =\int D \mathcal{\psi} \int D \bar{\psi} e^{i \int d^{\psi} x \bar{\psi}(i \not \partial-m+i \varepsilon) \psi}
\end{aligned}
$$

Treating the integration variables $\psi, \bar{\psi}$ as Grassmann valued spinors, we obtain

$$
\begin{aligned}
Z & =\int \mathcal{D} \psi \int D \bar{\psi} e^{i \int d^{4} \times \bar{\psi}(i \not \partial-m+i \varepsilon) \psi} \\
& =C^{\prime} \operatorname{det}(i \not \partial-m+i \varepsilon) \\
& =C^{\prime} e^{+r \log (i \not \partial-m+i \varepsilon)}
\end{aligned}
$$

where $C^{\prime}$ is some multiplicative constant.

$$
\begin{aligned}
\rightarrow & \operatorname{tr} \log (i \not \partial-m) \\
& =\operatorname{tr} \log \gamma^{5}(i \not \partial-m) r^{5} \\
& =\operatorname{tr} \log (-i \not \partial-m) \\
= & \frac{1}{2}[\operatorname{tr} \log (i \not \partial-m)+\operatorname{tr} \log (-i \partial-m)] \\
& =\frac{1}{2} \operatorname{tr} \log \left(\partial^{2}+m^{2}\right) \\
\rightarrow & Z=C^{1} e^{\frac{1}{2} \operatorname{tr} \log \left(\partial^{2}+m^{2}-i \Sigma\right)}
\end{aligned}
$$

this gives the same vacuum energy as obtained before with the canonical formalism( even with same sign!)
Dirac propagator
Let us now introduce Grassmannion spinor sources $\eta$ and $\bar{\eta}$ :

$$
Z[\eta, \bar{\eta}]=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{i \int d^{\psi} x[\bar{\psi}(i \not \partial-m) \psi+\bar{\eta} \psi+\bar{\psi} \eta]}
$$

Completing the square as in the case of the scalar field, we get

$$
\begin{aligned}
& \bar{\psi} k \psi+\bar{\eta} \psi+\bar{\psi} \eta \\
= & \left(\bar{\psi}+\bar{\eta} k^{-1}\right) k\left(\psi+k^{-1} \eta\right)-\bar{\eta} k^{-1} \eta \\
\rightarrow & Z[\eta, \bar{\eta}]=c^{\prime \prime} e^{-i \bar{\eta}(i \phi-m)^{-1} \eta}
\end{aligned}
$$

In other words, the propagator $S(x)$ for the Dirac field is given by

$$
(i \not \partial-m) S(x)=\delta^{(4)}(x)
$$

$\rightarrow$ solution is:

$$
i S_{F}(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p x}}{\not p-m+i \Sigma}
$$

in agreement with the result before.
Feynman rules for fermions
Let us consider the theory of a scalar field interacting with a Dirac field:

$$
z=\bar{\psi}\left(\text { if } \partial_{\mu}-m\right) \psi+\frac{1}{2}\left[(\partial \varphi)^{2}-\mu^{2} \varphi^{2}\right]-\lambda \varphi^{4}+\rho \varphi \bar{\pi} \bar{\psi}
$$

$\rightarrow$ generating functional:

$$
\begin{aligned}
& Z[\eta, \bar{\eta}] \\
= & \int D \psi \mathcal{D} \bar{\psi} \mathcal{D} \varphi e^{i S(\tau, \bar{\psi}, \varphi)+i \int d^{4} \times(\gamma \varphi+\bar{\eta} \psi+\bar{\psi} r)}
\end{aligned}
$$

$\rightarrow$ can be evaluated as a double series in the couplings $\lambda$ and $f$ using the following rules:

1) Draw a diagram with straight lines for the fermion and dotted lines for the boson, label each line with a momentum

2) Associate with each fermion line the propagator $\frac{i}{p-m+i \varepsilon}=i \frac{\phi+m}{p^{2}-m^{2}+i \varepsilon}$
3) Associate with each interaction vertex the coupling if and the factor $(2 \pi)^{4} \delta^{(4)}\left(\sum_{\text {in }} p-\sum_{\text {out }} p\right) \quad$ "momentum $\begin{gathered}\text { conservation" }\end{gathered}$
4) Momenta associated with internal lines are to be integrated over with the measure

$$
\int\left[\frac{d^{4} p}{(2 \pi)^{4}}\right]
$$

5) External lines are to be amputated. For an incoming fermion line write $u(p, s)$ and for an outgoing fermion line $\bar{u}(p \prime s)$
6) A factor ( -1 ) is to be associated with each closed fermion loop.

$$
\begin{aligned}
\prime & =\sqrt{\psi} \sqrt{\psi} \sqrt{\psi} \sqrt{\psi} \sqrt{\psi} \bar{\psi} \\
& =(-1) \operatorname{tr}[\sqrt{\psi \bar{\psi}} \sqrt{\psi \overline{4}} \sqrt{\psi \overline{4}} \sqrt{\psi \overline{4}}] \\
\ddots & =(-1) \operatorname{tr}\left[S_{F} S_{F} S_{F} S_{F}\right]
\end{aligned}
$$

